

INTELLIGENT TEST-CASE GENERATION FOR AUTOMATED

VALIDATION OF TCUs.
Lionel Belmon, Technical Director, Global Crown Technology, China

Yijia Xu, Software Engineer, DCT Project engineering dept., SAGW/SAIC group, China

ABSTRACT
Automatic transmissions are difficult to test and validate, due to the complex interaction of

mechanics, hydraulics, electronics, and transmission control software. This paper introduces

how simulation-based automatic generation of test scenarios can maximize test coverage

and reduce test workload at the same time. This tool, TestWeaver, has been applied by

SAGW during the development of the application software for a new Dual-Clutch

Transmission.

TestWeaver is based on a novel approach that aims at maximizing test coverage with

minimal work load for the test engineer specifying test cases. TestWeaver can be applied to

Simulink models (MiL), SiL setups or HiL setups. For testing a system, TestWeaver does not

require any test scripts. Instead, TestWeaver generates, runs and evaluates thousands of

tests cases (driving maneuvers) automatically - using a unique technology for intelligent test

generation and evaluation of reactive systems. The intelligent generation strategy

guarantees high test coverage with reduced work effort for engineers. For their DCT

application, SAGW used TestWeaver with Simulink models to identify issues such as

gearshift oscillations, overtime shifts or clutch overheat. 10,000's of scenarios are generated

overnight and provides fast feedback about maturity of a software release, typically within 12

hours. Specific uses cases and applications at SAGW are introduced.

Besides MiL application, TestWeaver can also be connected to HiL systems in various

manners. However, the main drawbacks of HiL testing are (1) much slower speed compared

to MiL/SiL and (2) increased complexity due to simulation non-determinisms, management of

fault codes and EEPROM reset. At SAGW, TestWeaver scenario generation is done on MiL

to quickly reach a high coverage. Selected scenarios are then reproduced and verified on

HiL.

INTRODUCTION
Testing and validating automatic transmissions is a complex, time-consuming and error

prone process. The TCU software must interact dynamically with the vehicle and this leads to

a very large numbers of states to be covered by testing. If some states are not covered, it is

possible that issues and bugs slips out of the test phase, only to be found out later during the

development cycle, or worse, after the SOP. Intensive testing with high test coverage during

the TCU software development should be performed in order to reduce the risks that bugs

might slip out.

SAGW is currently developing a new DCT and is applying an automated test method for

validating the transmission control unit. The System Under Test (SUT) is a Simulink model

containing the following parts, running in closed loop simulation:

- The TCU application software model

- A plant model of the DCT gearbox and vehicle

This SUT is a relevant object for testing because SAGW uses the application software model

to perform code generation. The resulting c-code is the one which is downloaded to the TCU

hardware in the car. Moreover, the plant model used is realistic enough to reproduce the

main dynamics and behavior of the real vehicle and gearbox.

PRINCIPLES AND IMPLEMENTATION OF TESTWEAVER

The driving concept in TestWeaver is to automate the generation and the analysis of test

scenarios. The SUT provided to TestWeaver is a black-box which only exposes pre-defined

input/ouputs, so called instruments. The nature of the SUT does not matter and could be a

Simulink model[1], a Virtual-ECU/SiL based simulation [2],[3] or a HiL based simulation.

Determinism of the SUT is however expected and un-deterministic behavior is checked and

reported. TestWeaver will generate and execute scenarios for the SUT and apply complex

algorithms in order to maximize the reached states coverage. A schematic is provided in the

following figure. Further details on TestWeaver can be found in [4].

For Simulink based SUT, TestWeaver provides a blockset containing the TestWeaver

instruments. Instrumenting a Simulink for use with TestWeaver is done by adding and

configuring the required instruments to the Simulink model. This step should be as non-

intrusive as possible and we took care during the implementation to avoid modification to the

original model structure. At SAGW, the following additions where done to the model :

- Instruments for letting TestWeaver control system inputs such as the

accelerator/brakes/gear lever/slope where added to the driver subsystem.

- Instruments for reporting all necessary outputs to TestWeaver where collected

intto a new subsystem, using GO-FROM blocks from various parts of the system.

The instruments don’t modify the simulation behavior and are inactive/bypassed as long as

TestWeaver is not connected to the SUT. The configuration of each individual instrument is

based on system specifications and requirements. For instance, engine and shafts speed

limits/overspeed are specified in the reporting instruments. We illustrate the implementation

in the simulink models in the following figures.

Figure 1: Example of implementation of a Chooser for the gear lever control

Figure 2 : Example of implementation of a Simulink subsystem for reporting outputs to

TestWeaver

Once instrumented, the SUT is then compiled with Simulink RTW as an executable program

that contains the interface functions to TestWeaver. This executable program (.exe) is then

called by TestWeaver to perform simulations. This allows high speed simulation and scenario

generation, several times faster than real-time.

Since TestWeaver generates 1000’s of scenarios, it is not practical to evaluate the scenarii

results by hand. TestWeaver provides an automatic reporting/analysis system that needs to

be configured according to our project requirements. The reporting system will explore and

dig through the huge data generated from the 1000’s of scenarios generated by TestWeaver.

This introduces a shift of paradigm in testing. The usual way of thinking for testing is script

based : „how to write a script that will go from 0% accelerator position to 100% accelerator

position during a 2-3 gearshift?“. In TestWeaver, instead, we write a query which will find all

generated scenarios where such case happen. To summarize, instead of focusing on how to

generate various states by scripting, we look for the states that we have interest in. A positive

side effect is that TestWeaver will generate scenarios and sequences that were not thought

of by the test engineer, increasing drastically the chances to find possible hidden bugs and

issues.

Among variables of interest that we need to report, we monitor the Actual Gear, the Target

Gear, the engine speed, the speed of each shaft and the gearshift time length. Monitoring

these variables allows to find issues in the gearshift logic such as a jammed/blocked

gearshift due to a TCU bug.

Finally, we also want to assess how well the SUT has been tested. The test coverage is a

complex metric that should be evaluated from different angles :

(1) Code coverage : Did we test all functions, branches ? Did we reach all meaningful

input/output values ?

(2) System states coverage : Did we reach all possible gearshifts ? Did we consider all

possible environment conditions ?

The code coverage and system states coverage are not equivalent: It is possible to reach a

high code coverage without reaching a high state coverage for instance. For a

TestWeaver/Simulink setup, the code coverage is usually ignored since the final production

c-code is not integrated into the simulation. We thus estimate test coverage by using the

system state coverage only. The system state coverage is a metric that has to be defined

according to the system specification. For automatic gearboxes, a relevant metric is the

gearshift reached during testing. We illustrate an example of system state coverage in the

following figure. When doing scenario generation, TestWeaver will try to maximize the state

coverage.

Figure 3: System state coverage : Reach gearshifts with various slopes and engine torques

APPLICATION AND USE CASES

For TCU testing, we generally first focus on generating scenarios where all possible

gearshifts are performed, under various environment conditions (slope). TestWeaver will

automatically report generic issues such as run-time exceptions, division by zero or memory

errors. System specific requirements and criteria are checked through the implementation of

instruments and reports queries. These can include variables such as shift durations, clutch

temperature, shafts speeds, and Actual Gear upshift/downshift repeated oscillations.

We give in the following paragraph an example of how a bug was found by TestWeaver and

how it was solved. During generation of scenarios, TestWeaver reported a case where

engine speed is above the prescribed limit of 7300 rpm. We could open the report of this

specific test scenario report to examine the input sequence. We provide the scenario report

in the following figure.

Figure 4 : Scenario report with abnormally high engine speed

The examination of this scenario seems to point out that the gear shift logic is broken when

shiftlever changes from R(Rear) to W(winter) and back to D(Drive). The target gear is set to

1 whereas the vehicle speed is already quite high (>60 km/h). We can notice that this bug

appears with a downhill slope and with a complex unusual gearlever sequence. It would

probably have been omitted from traditional script-based testing.

To degub this situation, TestWeaver can replay the scenario in the Simulink enviromnent so

that the TCU logic can be followed and debugged. In the Stateflow subsystem defining the

gearshift logic, the problem was isolated as an issue in a state transition from D to R and M

to R, which sets a wrong value for a variable (t_gear_creep). We give an overview of the

stateflow subsystem in the following figure.

Figure 5 : bug isolated in the Stateflow model

 A correction is applied to this transition and we can replay again the scenario to make sure

that the problem is fixed. The model is then compiled with RTW and we let TestWeaver

generate again scenarios to make sure that this modification does not introduce side effects.

A TestWeaver scenario test database can also be used for non-regression testing.

Using TestWeaver/Simulink to debug logical bugs is much easier than debugging on HiL

because replaying a scenario with TestWeaver/Simulink will highlight on which line the

stateflow jamming occurs. If a first guess is made on where the bug is, then replaying with

TestWeaver/Simulink can easily confirm of infirm this first guess, without wasting time on

adding flags, compiling and building model to hex, then flashing to TCU.

TESTWEAVER AND HiL SYSTEMS

Hardware-in-the-Loop test is a well established technology and process in the automotive

industry. TestWeaver fully supports connection to HiL systems such as dSPACE simulator,

ETAS Labcar or NI Veristand. TestWeaver also supports CAN hardware and XCP protocol

so that TestWeaver can automatically collect and reset fault codes on the ECU under test.

HiL systems are powerful for validating controllers network integration and

software/hardware integration. However, from a software testing point of view, HiL systems

suffer from several drawbacks such as :

- Poor features for supporting software debugging

- Complexity and cost of the overall system.

- Real-time constraints. A HiL must run real-time, not slower, not faster.

- Undeterministic behavior. Repeating the same input sequence could lead to

different outputs.

- Complexity and time needed for evaluating a software modification : code

generation, compilation, flashing to TCU, flashing calibration, evaluating scenarios.

A TestWeaver setup for HiL will suffer from the same issues. Automatic scenario generation

for reaching a meaningful coverage could take hours instead of minutes. However, there is

still interest in replaying on HiL selected scenarios generated from a TestWeaver/Simulink

setup. The motivation for HiL replay of scenario is :

(1) Verification of the real TCU behavior (instead of model) for specific scenarios

(2) The HiL setup replays much faster than Simulink. Simulink could take 10 mins to

replay a 60s scenario while HiL, as a real time system, only takes 60s.

(3) Analyzing data on CANape is much easier than looking at several scope on

Simulink, and CANape measurement file can be sent and shared by different

software engineers.

Based on the above, it was decided not to connect TestWeaver directly to the dSPACE HiL

simulator but to allow replay on HiL.

To replay a scenario on HiL, the first step is to export a csv file from TestWeaver, the CSV

file describes the input sequence in time. The csv file is converted to a MAT file that the HiL

can read. Each row of the MAT file contains several columns, which are shifter lever,

accelerate pedal, brake pressure and slope respectively.We built a simulink model which can

convert such csv files to MAT files. The simulink model makes sure the sample time between

each row is 1 ms sperately, i.e. a 60s driving scenario will be converted to a 60,000 row MAT

file. Then the MAT file will be loaded by the HiL plant model. In the plant model, the rows are

read one by one, and all inputs will be set identically as in the Simulink generated scenario.

CONCLUSION AND LIMITATIONS

A method for automatic large coverage testing of a DCT Transmission Control Unit has been

described in detail. The TestWeaver/Simulink setup introduced in this paper is an helpful tool

for debugging and validating complex controls for automatic gearbox. However, this setup

has several limitations :

(1) Calibration parameters are difficult to handle and to implement in the Simulink model.

Overall, the configuration in the Simulink model is slightly different than the

configuration tested in HiL or in the car.

(2) The TCU model is tested, instead of the TCU production c-code. Possible issues and

bugs due to fixed point arithmetics / scaling will be missed.

(3) System state coverage is available but code coverage is not available

(4) Replaying scenario is slow due to the interpreted Simulink model.

(5) No connection with measurement tools such as CANAPE, no convenient

writing/reading of measurements files (.mdf)

(6) CAN configurations (dbc files) are not included in the TestWeaver/Simulink setup

The above issues can be fixed with the implementation of a TestWeaver/Silver setup where

the production c-code of the TCU is integrated within a Virtual ECU. Silver is a Virtual-

ECU/SiL platform that provides the missing services and features described above. In terms

of usage, the TestWeaver/Silver setup would be somehow a „virtual“ HiL, focusing of

software testing and software debugging, without the hardware constraints of HiL simulators.

REFERENCES

[1] Test-driven development of DCT Control Software, N.Papkonstantinou,S.Klinger,M.Tatar,

8th International CTI Symposium Innovative Automotive Transmissions, 2009, Berlin.

[2] Automated test of the AMG speedshift DCT Control software, R.Schaich, M.Tatar, 9th

International CTI Symposium Innovative Automotive Transmissions, 2010, Berlin.

[3] Model-based Development of Dual-Clutch Transmission using Rapid Protoptying and

SiL,H.Bruckmann,J.Strenkert,B.Wiesner,A.Junghanns, Getriebe in Fahrzeugen, 2009,

Friedrichshafen

[4] Test automation based on Computer Chess Principles, A.Junghanns,J.Mauss,

M.Tatar,7th International CTI Symposium Innovative Automotive Transmissions, 2008, Berlin.

